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Introduction 

Map generalization, the process of simplifying detailed maps to smaller scale maps with 
the major semantic and structural characteristics maintained, plays a key role in multi-
scale cartographic representation. For decades, cartographers have explored various 
approaches for map generalization, such as vector-based algorithms (e.g., Douglas-
Peucker algorithm), raster-based algorithms (e.g., erosion and dilation (Damen, van 
Kreveld, & Spaan, 2008)), and traditional machine learning algorithms (e.g., decision 
trees, support vector machines (SVM) (Karsznia & Weibel, 2018)).  

Recently, due to the rapid development of deep learning, several researchers have 
employed deep convolutional neural networks in solving cartographic problems. 
Compared with traditional approaches, deep learning methods have the following 
characteristics: (1) deep learning methods can learn the cartographic knowledge from the 
existing map products directly which means cartographic patterns such as generalization 
rules and map style sheets are not necessary as input; (2) deep learning methods can take 
the entire map as a whole for training while traditional cartographic rules focus on specific 
map objects; (3) deep learning methods are still black-boxes which means that it is hard 
to understand their underlying theories while traditional rules are easy to be understood 
and customed by cartographers. Indeed, there have been studies using deep learning for 
solving the cartographic problems which achieved great success and provide innovative 
paradigms. For example, Kang, Gao, & Roth, (2019)used generative adversarial nets 
(GANs) to transfer different cartographic styles across various map data types; Feng, 
Thiemann, & Sester, (2019) compared three convolutional neural networks (CNN) for 
building generalization and showed the potential of deep learning in map generalization; 
Yan, Ai, Yang, & Yin, (2019) improved the accuracy of building patterns classification 
significantly by employing graph convolutional networks (GCN). They also used GCN 
for shape coding and cognition of buildings (Yan, Ai, Yang, & Tong, 2020).  

Despite their success, these studies may still face two challenges. First, current research 
focuses more on the usage of deep learning algorithms, while limited cartographic 
knowledge are encoded in these approaches. In other words, existing cartographic rules 
(knowledge-driven) are hardly involved in current data-driven approaches. Second, these 



studies are hard to reproduce as they are based on restricted data and professional 
software. A general computational framework is needed for customizing data production, 
model training, and evaluation, so that researchers can carry out their cartographic tasks 
fast and easily. 

In this paper, we propose a novel framework for map generalization using advanced 
deep learning methods. We ask: (1) How to encode cartographic knowledge in deep 
learning algorithms? (2) What generalization patterns can be learned by the deep 
learning algorithms? (3) How to effectively perform the full workflow only using 
common GIS software and open source data? 

Method 

Data Preparation 

The building data is downloaded from the TOP10NL digital topographic dataset from the 
Land Registry, Netherlands. It covers the full regions of the Netherlands, and opens to 
the public with unified production criteria so that the data quality can be guaranteed. 
Though there are various data types, we only take buildings into consideration for 
generalization in this paper.  

The TOP10NL dataset is stored as vector data. While CNNs require images as input 
which are raster-based data. Therefore, it is necessary to transfer vector data to raster data. 
To do so, we employ GeoServer to publish map services and use GeoWebCache to render 
map tiles at specific scale levels and particular regions. Two datasets are generated in this 
paper, the original TOP10NL data, and the generalized data based on the original data. 
To generate the latter one, various generalization functions in the ArcGIS toolbox can be 
used to set different parameters and thresholds. Here, we only take Simplify Building as 
an example in this paper. The generalized map data is created with a simplification 
tolerance of 20 meters and a minimum area of 20 square meters. After uploading the two 
datasets to GeoServer and rendering them as map tiles, 1500 images are stored in black 
and white colours, where black refers to buildings. Figure 1 shows several examples of 
the original and generalized data. 
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Figure 1: Examples of the original and generalized data rendered using GeoServer and 
TileCache. Data source: TOP10NL dataset. The ArcGIS Simplify Building function is 
used for map generalization. 



Model Training 

In our previous study (Kang et al., 2019), we discovered that generative adversarial nets 
(GANs) can learn several generalization operators (e.g., selection, enhancement, etc.) 
effectively. Similarly, GANs have shown potential for building generalization in existing 
studies (Feng et al., 2019). Though existing studies show that GCN can be used for vector 
data-based map generalization, while GANs might be appropriate for raster-based map 
generalization. Given that both vector data-based and raster data-based map 
generalization are two key components in map generalization, and the main focus is to 
encode cartographic knowledge into deep learning models, we only employed GANs 
here. 

Inspired by the previous works, in this paper, we employ GANs for map generalization.  

GANs consist of two components, namely the generator G and the discriminator D. The 
G is designed to generate images that have a realistic view based on the input images, and 
the D aims at distinguishing the real input images and the generated “fake” images. 
Following an adversarial training process, GANs can generate images under specific rules 
with auxiliary information. Specifically, we employ two types of GANs in this research, 
namely CycleGAN and GcGAN (geometry-consistent generative adversarial network) 
(Fu et al., 2018). The loss function of CycleGAN is illustrated as follows:  

ℒ"#$%&'() = ℒ'()(𝐺,𝐷/, 𝑋, 𝑌) + ℒ'()(𝐹, 𝐷5, 𝑋, 𝑌) + 𝜆ℒ"#$%&(𝐺, 𝐹) 

GcGAN is an extended model based on CycleGAN. Its loss function is illustrated as 
follows. The only difference to the CycleGAN is the 𝜆ℒ'&7(𝐺, 𝐹, 𝑋, 𝑌), where it can 
encode various geometry transformations into the model. More specifically, it can ensure 
the geometry consistency of the input and output data. Therefore, the output data should 
follow the same geometry transformation with the input data.  

ℒ'$'() = ℒ'()(𝐺,𝐷/, 𝑋, 𝑌) + ℒ'()(𝐹,𝐷5, 𝑋, 𝑌) + 𝜆ℒ'&7(𝐺, 𝐹, 𝑋, 𝑌) 

As our main focus is to encode cartographic knowledge in deep learning models, we 
expect to involve a set of map generalization rules in the models, such as proximity, 
similarity, continuity, connectedness, closure, common region, etc. Here, we only take 
two specific geometry transformations in GcGAN as examples: rotation and vertical flip. 
The hypothesis is that cartographic generalization is direction invariant, in other words, 
the two generalized images based on input image and rotated image/vertical flipped image 
should be the same. However, in CycleGAN, the model may learn that buildings with top 
left corners should be generalized while with bottom right corners should not be 
generalized. Since GcGAN can encode knowledge like this, we use it for encoding 
cartographic knowledge in the map generalization process. 

Evaluation 

Currently, the evaluation of the results is based on human observation to compare the 
example outputs of different algorithms. On the one hand, generalization results are 
subjective there are no optimal quantitative measurements from a cartographic 
perspective. On the other hand, pixel-based image measurements from a computer aspect 
may not be used to evaluate the generalization results comprehensively. For instance, the 



generalized data may change its original position, which will increase the error and 
therefore influence the evaluation results. 

Results 

Figure 2 shows some results. Intuitively, it can be referred that GcGAN (both with 
rotation transformation and vertical flip transformation) performs better than CycleGAN. 
For instance, in the first row, the building in the red circle is generalized to a rectangle 
based on the current generalization approach as ground truth. The result of CycleGAN 
still maintains its original shape, while GcGANs remove the corners of the building, and 
its shape becomes smoother. Similarly, in the second row, the building corners in the red 
circle are removed and the connectors between two buildings become smoother. The 
results not only show that GcGAN is more suitable for building generalization, but also 
show the importance of encoding cartographic knowledge in deep learning algorithms.   

 

Figure 2: Results of the building generalization using CycleGAN and GcGAN. From left 
to right: original data, CycleGAN, GcGAN with rotation transformation, GcGAN with 
vertical flip transformation, and generalized data as the ground truth. Red circles show 
some examples for the comparison among different algorithms. 

Discussion and Conclusion 

In summary, our research proposes a novel framework for map generalization using deep 
learning approaches. By encoding several basic geometry transformations into the GANs 
model, the map generalization patterns can be learned more compared with the baseline 
algorithm. In addition, since our framework only relies on common GIS software and 
open source data, it is easy to reproduce, implement and customize the workflow of deep 
learning-based map generalization process. The results show potential in involving 
cartographic knowledge in deep learning for solving cartographic problems.  

Also, there is still room for further improvements. First, the performances of models are 
still not good enough as only limited improvement has been achieved. In the next step, 
we will try to encode more cartographic knowledge, not only the geometry transformation, 
but also cartographic theories such as visual representations, proximity, similarity, 
continuity, etc, into the deep learning methods. Second, current generalized data are only 



based on several simple rules using ArcGIS, while map generalization is a complex 
process and more operators should be involved in the future.  

Though challenges still exist, we demonstrate the pioneer works in such an emerging 
research direction that integrates deep learning in cartography. More fruitful discussions 
will be expected in the AutoCarto symposium.  
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